Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 25;278(30):27742-9.
doi: 10.1074/jbc.M301946200. Epub 2003 May 9.

Co-stimulation of mGluR5 and N-methyl-D-aspartate receptors is required for potentiation of excitatory synaptic transmission in hippocampal neurons

Affiliations
Free article

Co-stimulation of mGluR5 and N-methyl-D-aspartate receptors is required for potentiation of excitatory synaptic transmission in hippocampal neurons

Suhas A Kotecha et al. J Biol Chem. .
Free article

Abstract

In the central nervous system, excitatory synaptic transmission is mediated by the neurotransmitter glutamate and its receptors. Interestingly, stimulation of group I metabotropic glutamate receptors (mGluRs) can either enhance or depress synaptic transmission at CA1 hippocampal synapses. Here we report that co-activation of mGluR5, a member of the group I mGluR family, and N-methyl-d-aspartate receptors (NMDARs) potentiates NMDAR currents and induces a long lasting enhancement of excitatory synaptic transmission in primary cultured hippocampal neurons. Unexpectedly, activation of mGluR5 alone fails to enhance evoked NMDAR currents and synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) AMPAR currents. The observed potentiation requires an mGluR5-induced, inositol 1,4,5-trisphosphate receptor-mediated mobilization of intracellular Ca2+, which acts in concert with a protein kinase C, calcium-activated tyrosine kinase cascade to induce a long lasting enhancement of NMDAR and AMPAR currents.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources