Liquid-vapor oscillations of water in hydrophobic nanopores
- PMID: 12740433
- PMCID: PMC165830
- DOI: 10.1073/pnas.1136844100
Liquid-vapor oscillations of water in hydrophobic nanopores
Abstract
Water plays a key role in biological membrane transport. In ion channels and water-conducting pores (aquaporins), one-dimensional confinement in conjunction with strong surface effects changes the physical behavior of water. In molecular dynamics simulations of water in short (0.8 nm) hydrophobic pores the water density in the pore fluctuates on a nanosecond time scale. In long simulations (460 ns in total) at pore radii ranging from 0.35 to 1.0 nm we quantify the kinetics of oscillations between a liquid-filled and a vapor-filled pore. This behavior can be explained as capillary evaporation alternating with capillary condensation, driven by pressure fluctuations in the water outside the pore. The free-energy difference between the two states depends linearly on the radius. The free-energy landscape shows how a metastable liquid state gradually develops with increasing radius. For radii > approximately 0.55 nm it becomes the globally stable state and the vapor state vanishes. One-dimensional confinement affects the dynamic behavior of the water molecules and increases the self diffusion by a factor of 2-3 compared with bulk water. Permeabilities for the narrow pores are of the same order of magnitude as for biological water pores. Water flow is not continuous but occurs in bursts. Our results suggest that simulations aimed at collective phenomena such as hydrophobic effects may require simulation times >50 ns. For water in confined geometries, it is not possible to extrapolate from bulk or short time behavior to longer time scales.
Figures




Comment in
-
What happens if the room at the bottom runs out? A close look at small water pores.Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7421-2. doi: 10.1073/pnas.1533175100. Epub 2003 Jun 16. Proc Natl Acad Sci U S A. 2003. PMID: 12810943 Free PMC article. No abstract available.
Similar articles
-
The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.Phys Biol. 2004 Jun;1(1-2):42-52. doi: 10.1088/1478-3967/1/1/005. Phys Biol. 2004. PMID: 16204821
-
Filling and emptying transitions in cylindrical channels: a density functional approach.J Chem Phys. 2007 Jun 14;126(22):224703. doi: 10.1063/1.2740270. J Chem Phys. 2007. PMID: 17581076
-
Surfactant solutions and porous substrates: spreading and imbibition.Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007. Adv Colloid Interface Sci. 2004. PMID: 15571660
-
Molecular simulation studies of hydrophobic gating in nanopores and ion channels.Biochem Soc Trans. 2015 Apr;43(2):146-50. doi: 10.1042/BST20140256. Biochem Soc Trans. 2015. PMID: 25849908 Review.
-
Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.Chem Rev. 2020 Sep 23;120(18):10298-10335. doi: 10.1021/acs.chemrev.9b00830. Epub 2020 Aug 25. Chem Rev. 2020. PMID: 32841020 Free PMC article. Review.
Cited by
-
Free energy of hydrophilic and hydrophobic pores in lipid bilayers by free energy perturbation of a restraint.J Chem Phys. 2020 Aug 7;153(5):054101. doi: 10.1063/5.0016682. J Chem Phys. 2020. PMID: 32770888 Free PMC article.
-
Principles of conduction and hydrophobic gating in K+ channels.Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5833-8. doi: 10.1073/pnas.0911691107. Epub 2010 Mar 15. Proc Natl Acad Sci U S A. 2010. PMID: 20231479 Free PMC article.
-
Calcium-gated potassium channel blockade via membrane-facing fenestrations.Nat Chem Biol. 2024 Jan;20(1):52-61. doi: 10.1038/s41589-023-01406-2. Epub 2023 Aug 31. Nat Chem Biol. 2024. PMID: 37653172 Free PMC article.
-
Unveiling the Gating Mechanism of CRAC Channel: A Computational Study.Front Mol Biosci. 2021 Dec 14;8:773388. doi: 10.3389/fmolb.2021.773388. eCollection 2021. Front Mol Biosci. 2021. PMID: 34970596 Free PMC article.
-
Simulations of skin barrier function: free energies of hydrophobic and hydrophilic transmembrane pores in ceramide bilayers.Biophys J. 2008 Nov 15;95(10):4763-71. doi: 10.1529/biophysj.108.138545. Epub 2008 Aug 15. Biophys J. 2008. PMID: 18708461 Free PMC article.
References
-
- Doyle, D. A., Morais-Cabral, J., Pfützner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. & MacKinnon, R. (1998) Science 280, 69-77. - PubMed
-
- Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. (1998) Science 282, 2220-2226. - PubMed
-
- Fu, D., Libson, A., Miercke, L. J., Weitzman, C., Nollert, P., Krucinski, J. & Stroud, R. M. (2000) Science 290, 481-486. - PubMed
-
- Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. (2001) Nature 414, 872-878. - PubMed
-
- Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. (2002) Nature 415, 287-294. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous