Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;11(5):674-82.
doi: 10.1038/oby.2003.96.

Regional fat pad growth and cellularity in obese zucker rats: modulation by caloric restriction

Affiliations
Free article

Regional fat pad growth and cellularity in obese zucker rats: modulation by caloric restriction

Dorothy B Hausman et al. Obes Res. 2003 May.
Free article

Abstract

Objective: To investigate, in young obese male Zucker rats, the effects of chronic food restriction and subsequent refeeding on: 1). parameters of nonadipose and adipose growth, 2). regional adipose depot cellularity [fat cell volume (FCV) and number], and 3). circulating leptin levels.

Research methods and procedures: Obese (fa/fa) and lean (Fa/?) male Zucker rats were studied from age 5 to 19 weeks. After baseline food intake monitoring, 10 obese rats were subjected to 58 days of marked caloric restriction from ad libitum levels [obese-restricted (OR)], followed by a return to ad libitum feeding for 22 days. Ten lean control rats and 10 obese control rats were fed ad libitum for the entire experiment. All rats were fed using a computer-driven automated feeding system designed to mimic natural eating patterns.

Results: After food restriction, OR rats weighed significantly less than did lean and obese rats and showed a significant diminution in body and adipose growth as compared with obese rats. Relative adiposity was not different between obese and OR rats and was significantly higher than that of lean rats. The limitation in growth of the adipose tissue mass in OR rats was due mostly to suppression of fat cell proliferation because the mean FCV in each of the four depots was not affected. Serum leptin levels of OR and obese rats were not different from each other but were significantly higher than those of lean rats.

Discussion: Marked caloric restriction affects obese male Zucker rats in a manner different from that of nongenetic rodent models (i.e., Wistar rats). In comparison with the response to caloric deprivation of Wistar rats, these calorically restricted obese male Zucker rats appeared to defend their relative adiposity and mean FCV at the expense of fat cell number. These findings indicate that genetic and/or tissue-specific controls override the general consequences of food restriction in this genetic model of obesity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources