Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;29(5):619-29.
doi: 10.1016/S0160-4120(03)00049-7.

Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading

Affiliations

Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading

V Hatje et al. Environ Int. 2003 Aug.

Abstract

The uptake and release of 109Cd, 51Cr, 60Co, 59Fe, 54Mn, and 65Zn were studied using end-member waters and particles from Port Jackson estuary, Australia. The kinetics of adsorption and desorption were studied as a function of suspended particulate matter (SPM) loading and salinity. Batch experiments showed that the position and slope of the pH edges are dependent on the metal and on the salinity of the water (except for Mn). The general effect of salinity was to move the adsorption edge to higher pH values, with the greatest change being found for Cd. Most of the metals showed relatively simple kinetics with an increase in uptake as a function of time and suspended particle concentrations. The time dependence of Cd uptake was more complex, with an initial adsorption phase being followed by strong mobilization from the suspended sediments, explained by chlorocomplexation and competition with seawater major cations. The reversibility of the sorption decreased in the order Co>Mn>Zn>Cd>Fe>Cr. The percentage of adsorbed metal released in desorption experiments was greater in seawater than freshwater for Cd, Zn, and Co. These results are important in understanding the cycling of pollutants in response to pH, salinity, and particle concentrations in estuarine environments. In addition, they give valuable insight into the important mechanisms controlling the partitioning of heavy metals in the Port Jackson estuary.

PubMed Disclaimer

Publication types

LinkOut - more resources