Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jun 1;414(1):74-82.
doi: 10.1016/s0003-9861(03)00159-0.

Rapid flip-flop in polyunsaturated (docosahexaenoate) phospholipid membranes

Affiliations
Comparative Study

Rapid flip-flop in polyunsaturated (docosahexaenoate) phospholipid membranes

Victoria T Armstrong et al. Arch Biochem Biophys. .

Abstract

The transbilayer movement (flip-flop) of 7-nitrobenz-2-oxa-1,3-diazol-4-yl phosphatidylethanolamine (NBD-PE) in phosphatidylcholine (PC) membranes containing various acyl chains was measured by dithionite quenching of NBD fluorescence. Of specific interest was docosahexaenoic acid (DHA), the longest and most unsaturated acyl chain commonly found in membranes. This molecule represents the extreme example of a family of important fatty acids known as omega-3s and has been clearly demonstrated to alter membrane structure and function. One important property that has yet to be reported is the effect of DHA on membrane phospholipid flip-flop. This study demonstrates that as the number of double bonds in the fatty acyl chains comprising the membrane increases, so does the rate of flip-flop of the NBD-PE probe. The increase is particularly marked in the presence of DHA. Half-lives t(1/2) of 0.29 and 0.086 h describe the process in 1-stearoyl-2-docosahexaenoylphosphatidylcholine and 1,2-didocosahexaenoylphosphatidylcholine, respectively, whereas in 1-stearoyl-2-oleoylphosphatidylcholine t(1/2)=11.5h. Enhanced permeability to dithionite with increasing unsaturation was also indicated by our results. We conclude that PC membranes containing DHA support faster flip-flop and permeability rates than those measured for other less-unsaturated PCs.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources