Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;285(3):E608-13.
doi: 10.1152/ajpendo.00501.2002. Epub 2003 May 13.

Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells

Affiliations
Free article

Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells

Astrid D Bakker et al. Am J Physiol Endocrinol Metab. 2003 Sep.
Free article

Abstract

Parathyroid hormone (PTH) and mechanical stress both stimulate bone formation but have opposite effects on bone resorption. PTH increased loading-induced bone formation in a rat model, suggesting that there is an interaction of these stimuli, possibly at the cellular level. To investigate whether PTH can modulate mechanotransduction by bone cells, we examined the effect of 10-9 M human PTH-(1-34) on fluid flow-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production by primary mouse osteoblastic cells in vitro. Mechanical stress applied by means of a pulsating fluid flow (PFF; 0.6 +/- 0.3 Pa at 5 Hz) stimulated both NO and PGE2 production twofold. In the absence of stress, PTH also caused a twofold increase in PGE2 production, but NO release was not affected and remained low. Simultaneous application of PFF and PTH nullified the stimulating effect of PFF on NO production, whereas PGE2 production was again stimulated only twofold. Treatment with PTH alone reduced NO synthase (NOS) enzyme activity to undetectable levels. We speculate that PTH prevents stress-induced NO production via the inhibition of NOS, which will also inhibit the NO-mediated upregulation of PGE2 by stress, leaving only the NO-independent PGE2 upregulation by PTH. These results suggest that mechanical loading and PTH interact at the level of mechanotransduction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources