Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep 15;102(6):2236-9.
doi: 10.1182/blood-2002-12-3899. Epub 2003 May 15.

Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571)

Affiliations
Free article

Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571)

Lara Wohlbold et al. Blood. .
Free article

Abstract

Bcr-Abl proteins are effective inducers of the leukemic phenotype in chronic myeloid leukemia (CML) and distinct variants of acute lymphoblastic leukemia (ALL). Targeting bcr-abl by treatment with the selective tyrosine kinase inhibitor imatinib has proved to be highly efficient for controlling leukemic growth. However, it is unclear whether imatinib is sufficient to eradicate the disease because of primary or secondary resistance of leukemic cells. Therefore, targeting Bcr-Abl with an alternative approach is of great interest. We demonstrate that RNA interference (RNAi) with a breakpoint-specific short-interfering RNA (siRNA) is capable of decreasing Bcr-Abl protein expression and of antagonizing Bcr-Abl-induced biochemical activities. RNAi selectively inhibited Bcr-Abl-dependent cell growth. Furthermore, bcr-abl-homologous siRNA increased sensitivity to imatinib in Bcr-Abl-overexpressing cells and in a cell line expressing the imatinib-resistant Bcr-Abl kinase domain mutation His396Pro, thereby antagonizing 2 of the major mechanisms of resistance to imatinib.

PubMed Disclaimer

Publication types

MeSH terms