Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 13;92(11):1201-8.
doi: 10.1161/01.RES.0000076893.70898.36. Epub 2003 May 15.

Modification of GATA-2 transcriptional activity in endothelial cells by the SUMO E3 ligase PIASy

Affiliations
Free article

Modification of GATA-2 transcriptional activity in endothelial cells by the SUMO E3 ligase PIASy

Tae-Hwa Chun et al. Circ Res. .
Free article

Abstract

GATA sequences are required for the optimal expression of endothelial cell-specific genes, including endothelin-1 (ET-1). We have identified PIASy in a search for new GATA-2 interacting proteins that can regulate GATA-2-mediated endothelial gene expression. Notably, among the cell populations comprising vascular walls, PIASy mRNA is selectively expressed in endothelial cells, and its expression can be regulated by angiogenic growth factors. We show that GATA-2 is covalently modified by small ubiquitin-like modifier (SUMO)-1 and -2 and that PIASy, through its E3 SUMO ligase activity, preferentially enhances the conjugation of SUMO-2 to GATA-2. Through a functional analysis, we demonstrate that PIASy potently suppresses the activity of the GATA-2-dependent human ET-1 promoter in endothelial cells. The suppressive effect of PIASy requires the GATA-binding site in the ET-1 promoter and depends on its interaction with GATA-2, which requires both N-terminal (amino acids 1-183) and C-terminal (amino acids 414-510) sequences in PIASy. We conclude that PIASy enhances the conjugation of SUMO-2 to GATA-2 and that the interaction of PIASy with GATA-2 can modulate GATA-mediated ET-1 transcription activity in endothelial cells through a RING-like domain-independent mechanism.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources