Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;17(9):1802-10.
doi: 10.1046/j.1460-9568.2003.02618.x.

Regulation of alpha1G T-type calcium channel gene (CACNA1G) expression during neuronal differentiation

Affiliations

Regulation of alpha1G T-type calcium channel gene (CACNA1G) expression during neuronal differentiation

Gabriel E Bertolesi et al. Eur J Neurosci. 2003 May.

Abstract

Down-regulation of T-type Ca channel current and mRNA occurs following differentiation of Y79 retinoblastoma cells. To understand how the decrease in expression is linked to cell differentiation, we examined transcriptional regulation of the Cav3.1 Ca channel gene, CACNA1G. We identified two putative promoters (A and B) in 1.3 kb of cloned genomic DNA. Reverse transcriptase-polymerase chain reaction and 5' rapid amplification of cDNA ends-polymerase chain reaction analyses demonstrated that two transcripts with different 5' untranslated regions are generated by different transcription start sites, with promoter A favoured in undifferentiated cells and promoter B favoured in differentiated cells. Functional analyses of the promoter sequence revealed that both promoters are active. Enhancer and repressor sequences were identified upstream of promoter A and B, respectively. These results suggest that the down-regulation of alpha1G mRNA in differentiated Y79 cells is mediated primarily by decreased activity of promoter A, which could occur in conjunction with repression of the activity of promoter B. The decrease in T-type Ca channel expression in Y79 cells may be an essential signal affecting phenotypic maturation and expression of other ion channel subtypes in the differentiated cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources