Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jun;6(3):268-72.
doi: 10.1016/s1369-5266(03)00041-4.

Got silicon? The non-essential beneficial plant nutrient

Affiliations
Review

Got silicon? The non-essential beneficial plant nutrient

Kathryn E Richmond et al. Curr Opin Plant Biol. 2003 Jun.

Abstract

Research on a possible nutritional role for the element silicon has been hampered by the diverse beneficial effects that it has on monocots and dicots, and the subsequent difficulties in focusing studies on a single genetic model system. Although deemed a non-essential nutrient for the majority of plants, the benefits of silicon include increasing pest and pathogen resistance, drought and heavy metal tolerance, and the quality and yield of agricultural crops. Although the pathways and molecular mechanisms by which silicon is absorbed and deposited in plants are still unclear, recent progress has been achieved through the use of rice mutants that are deficient in silicon uptake. Additionally, the application of electron-energy-loss spectroscopy (EELS) allows one to determine the composition of silica deposits conclusively. Thereby shedding light upon the role of silicon in heavy metal tolerance. With the complete sequence of the genomes for a dicot (Arabidopsis) and a monocot (rice) available for large-scale genetic analysis, the future bodes well for a more complete understanding of the biological role of silicon and its mode of transport into and through plants.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources