Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 15;65(10):1603-10.
doi: 10.1016/s0006-2952(03)00151-5.

Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells

Affiliations

Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells

Thomas Walle et al. Biochem Pharmacol. .

Abstract

Quercetin-rich foods have the potential to prevent human disease. However, knowledge of its biological fate and mechanism of action is limited. This study extends previous observations of the oxidation of quercetin by peroxidases to quinone/quinone methide intermediates and, for the first time, demonstrates covalent binding of [14C]quercetin to macromolecules. This was first demonstrated using horseradish peroxidase and hydrogen peroxide with human liver microsomal protein to trap the intermediates. To extend this observation to the cellular level, human intestinal Caco-2 cells and hepatic Hep G2 cells were incubated for up to 2hr with [14C]quercetin, and cellular DNA and protein were isolated. The cellular uptake of [14C]quercetin was rapid, and the covalent binding of [14C]quercetin to DNA and protein was determined by liquid scintillation spectrometry after extensive purification. Both cell types demonstrated DNA binding with a maximum level of 5-15pmol/mg DNA. The level of covalent binding to protein was considerably higher in both cell types, 75-125pmol/mg protein. To determine potential specificity in the protein binding, Hep G2 cells were treated with [14C]quercetin, and the cell lysate was subjected to SDS-PAGE followed by staining and autoradiography. Several distinct radiolabeled protein bands did not correspond to the major Coomassie blue stained cellular proteins. We propose that this specific binding may mediate part of the antiproliferative and other cellular actions of quercetin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources