Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;31(6):731-41.
doi: 10.1124/dmd.31.6.731.

The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human

Affiliations

The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human

S J Roffey et al. Drug Metab Dispos. 2003 Jun.

Abstract

Voriconazole is a new triazole antifungal agent with potent, wide-spectrum activity. Its pharmacokinetics and metabolism have been studied in mouse, rat, rabbit, dog, guinea pig, and humans after single and multiple administration by both oral and intravenous routes. Absorption of voriconazole is essentially complete in all species. The elimination of voriconazole is characterized by non-linear pharmacokinetics in all species. Consequently, pharmacokinetic parameters are dependent upon dose, and a superproportional increase in area under the curve is seen with increasing dose in rat and dog toxicology studies. Following multiple administration, there is a decrease in systemic exposure. This is most pronounced in mouse and rat, less so in dog, and not observed in guinea pig or rabbit. Repeat-dose toxicology studies in mouse, rat, and dog have demonstrated that induction of cytochrome P450 by voriconazole (autoinduction of metabolism) is responsible for the decreased exposure in these species. Autoinduction of metabolism is not observed in humans, and plasma steady-state concentrations remain constant with time. Voriconazole is extensively metabolized in all species. The major pathways in humans involve fluoropyrimidine N-oxidation, fluoropyrimidine hydroxylation, and methyl hydroxylation. Also, N-oxidation facilitates cleavage of the molecule, resulting in loss of the fluoropyrimidine moiety and subsequent conjugation with glucuronic acid. Major pathways are represented in animal species. The major circulating metabolite in rat, dog, and human is the N-oxide of voriconazole. It is not thought to contribute to efficacy since it is at least 100-fold less potent than voriconazole against fungal pathogens in vitro.

PubMed Disclaimer

MeSH terms

LinkOut - more resources