Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jun;206(Pt 12):2039-47.
doi: 10.1242/jeb.00426.

Phosphotransfer networks and cellular energetics

Affiliations
Review

Phosphotransfer networks and cellular energetics

Petras P Dzeja et al. J Exp Biol. 2003 Jun.

Abstract

Precise coupling of spatially separated intracellular ATP-producing and ATP-consuming processes is fundamental to the bioenergetics of living organisms, ensuring a fail-safe operation of the energetic system over a broad range of cellular functional activities. Here, we provide an overview of the role of spatially arranged enzymatic networks, catalyzed by creatine kinase, adenylate kinase, carbonic anhydrase and glycolytic enzymes, in efficient high-energy phosphoryl transfer and signal communication in the cell. Studies of transgenic creatine kinase and adenylate kinase deficient mice, along with pharmacological targeting of individual enzymes, have revealed the importance of near-equilibrium reactions in the dissipation of metabolite gradients and communication of energetic signals to distinct intracellular compartments, including the cell nucleus and membrane metabolic sensors. Enzymatic capacities, isoform distribution and the dynamics of net phosphoryl flux through the integrated phosphotransfer systems tightly correlate with cellular functions, indicating a critical role of such networks in efficient energy transfer and distribution, thereby securing the cellular economy and energetic homeostasis under stress.

PubMed Disclaimer

LinkOut - more resources