Metabolite-binding RNA domains are present in the genes of eukaryotes
- PMID: 12756322
- PMCID: PMC1370431
- DOI: 10.1261/rna.5090103
Metabolite-binding RNA domains are present in the genes of eukaryotes
Abstract
Genetic control by metabolite-binding mRNAs is widespread in prokaryotes. These riboswitches are typically located in noncoding regions of mRNA, where they selectively bind their target compound and subsequently modulate gene expression. We have identified mRNA elements in fungi and in plants that match the consensus sequence and structure of thiamine pyrophosphate-binding domains of prokaryotes. In Arabidopsis, the consensus motif resides in the 3'-UTR of a thiamine biosynthetic gene, and the isolated RNA domain binds the corresponding coenzyme in vitro. These results suggest that metabolite-binding mRNAs are possibly involved in eukaryotic gene regulation and that some riboswitches might be representatives of an ancient form of genetic control.
Figures




Similar articles
-
Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.Nature. 2006 Jun 29;441(7097):1167-71. doi: 10.1038/nature04740. Epub 2006 May 21. Nature. 2006. PMID: 16728979 Free PMC article.
-
Control of alternative RNA splicing and gene expression by eukaryotic riboswitches.Nature. 2007 May 24;447(7143):497-500. doi: 10.1038/nature05769. Epub 2007 Apr 29. Nature. 2007. PMID: 17468745
-
Switching the light on plant riboswitches.Trends Plant Sci. 2008 Oct;13(10):526-33. doi: 10.1016/j.tplants.2008.07.004. Epub 2008 Sep 6. Trends Plant Sci. 2008. PMID: 18778966 Review.
-
Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes.Nucleic Acids Res. 2004 Jan 2;32(1):143-50. doi: 10.1093/nar/gkh167. Print 2004. Nucleic Acids Res. 2004. PMID: 14704351 Free PMC article.
-
Genetic control by metabolite-binding riboswitches.Chembiochem. 2003 Oct 6;4(10):1024-32. doi: 10.1002/cbic.200300685. Chembiochem. 2003. PMID: 14523920 Review. No abstract available.
Cited by
-
Metabolite recognition principles and molecular mechanisms underlying riboswitch function.Annu Rev Biophys. 2012;41:343-70. doi: 10.1146/annurev-biophys-101211-113224. Annu Rev Biophys. 2012. PMID: 22577823 Free PMC article. Review.
-
RNA Structures as Mediators of Neurological Diseases and as Drug Targets.Neuron. 2015 Jul 1;87(1):28-46. doi: 10.1016/j.neuron.2015.06.012. Neuron. 2015. PMID: 26139368 Free PMC article. Review.
-
Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.Nature. 2006 Jun 29;441(7097):1167-71. doi: 10.1038/nature04740. Epub 2006 May 21. Nature. 2006. PMID: 16728979 Free PMC article.
-
Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast.Nucleic Acids Res. 2007;35(12):4179-85. doi: 10.1093/nar/gkm425. Epub 2007 Jun 12. Nucleic Acids Res. 2007. PMID: 17567606 Free PMC article.
-
Riboswitches: from ancient gene-control systems to modern drug targets.Future Microbiol. 2009 Sep;4(7):771-3. doi: 10.2217/fmb.09.46. Future Microbiol. 2009. PMID: 19722830 Free PMC article. No abstract available.
References
-
- Begley, T.P., Downs, D.M., Ealick, S.E., McLafferty, F.W., Van Loon, A.P., Tayla, S., Campobasso, N., Chiu, H.J., Kinsland, C., Reddick, J.J., et al. 1999. Thiamin biosynthesis in prokaryotes. Arch. Microbiol. 171: 293–300. - PubMed
-
- Gelfand, M.S., Mironov, A.A., Jomantas, J., Kozlov, Y.I., and Perumov, D.A. 1999. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet. 15: 439–442. - PubMed
-
- Hesselberth, J.R., Robertson, M.P., Knudsen, S.M., and Ellington, A.D. 2003. Simultaneous detection of diverse analytes with aptazyme ligase array. Anal. Biochem. 312: 106–112. - PubMed
-
- Jeffares, D.C., Poole, A.M., and Penny, D. 1998. Relics from the RNA world. J. Mol. Evol. 46: 18–36. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources