The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable
- PMID: 12757939
- DOI: 10.1016/S0378-1097(03)00211-8
The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable
Abstract
We report a transposase gene (tnpA) upstream of the opdA phosphotriesterase gene of Agrobacterium radiobacter P230, as well as inverted repeats indicative of insertion sequences, flanking the two genes. Both the tnpA gene and the inverted repeats resemble the Tn610 transposon from Mycobacterium fortuitum. Two additional putative open reading frames separate opdA and tnpA with inferred translation products with similarity to two proteins encoded on the Geobacillus stearothermophilus IS5376 transposon. To test the proposition that these genes were contained on a transposon, an artificial composite transposon was constructed. This artificial transposon was then delivered into Escherichia coli DH10beta cells. Transposition was demonstrated by the presence of opdA on the E. coli chromosome and confirmation of insertion by inverse polymerase chain reaction. The data presented suggest a possible role of transposition in the distribution of the opd/opdA genes across a wide range of soil bacteria.
Similar articles
-
Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate.Appl Environ Microbiol. 2002 Jul;68(7):3371-6. doi: 10.1128/AEM.68.7.3371-3376.2002. Appl Environ Microbiol. 2002. PMID: 12089017 Free PMC article.
-
Functional effects of amino acid substitutions within the large binding pocket of the phosphotriesterase OpdA from Agrobacterium sp. P230.FEMS Microbiol Lett. 2006 Jun;259(2):187-94. doi: 10.1111/j.1574-6968.2006.00262.x. FEMS Microbiol Lett. 2006. PMID: 16734778
-
Structural and functional characterization of IS679 and IS66-family elements.J Bacteriol. 2001 Jul;183(14):4296-304. doi: 10.1128/JB.183.14.4296-4304.2001. J Bacteriol. 2001. PMID: 11418571 Free PMC article.
-
Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution.Protein Eng. 2003 Feb;16(2):135-45. doi: 10.1093/proeng/gzg013. Protein Eng. 2003. PMID: 12676982
-
Evolution in action.Chem Biol. 1995 Feb;2(2):71-5. doi: 10.1016/1074-5521(95)90278-3. Chem Biol. 1995. PMID: 9383406 Review.
Cited by
-
Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase.Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Jul 1;63(Pt 7):553-5. doi: 10.1107/S1744309107023512. Epub 2007 Jun 11. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007. PMID: 17620708 Free PMC article.
-
Boosted large-scale production and purification of a thermostable archaeal phosphotriesterase-like lactonase for organophosphate decontamination.J Ind Microbiol Biotechnol. 2017 Mar;44(3):363-375. doi: 10.1007/s10295-016-1892-x. Epub 2017 Jan 11. J Ind Microbiol Biotechnol. 2017. PMID: 28074318
-
Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation.Microbiol Mol Biol Rev. 2010 Mar;74(1):58-80. doi: 10.1128/MMBR.00029-09. Microbiol Mol Biol Rev. 2010. PMID: 20197499 Free PMC article. Review.
-
Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus.Extremophiles. 2009 May;13(3):461-70. doi: 10.1007/s00792-009-0231-9. Epub 2009 Feb 27. Extremophiles. 2009. PMID: 19247785
-
Multiple mechanisms contribute to lateral transfer of an organophosphate degradation (opd) island in Sphingobium fuliginis ATCC 27551.G3 (Bethesda). 2012 Dec;2(12):1541-54. doi: 10.1534/g3.112.004051. Epub 2012 Dec 1. G3 (Bethesda). 2012. PMID: 23275877 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources