Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;75(1):163-71.
doi: 10.1016/s0091-3057(03)00069-8.

Amphetamine-modified acoustic startle responding and prepulse inhibition in adult and adolescent alcohol-preferring and -nonpreferring rats

Affiliations

Amphetamine-modified acoustic startle responding and prepulse inhibition in adult and adolescent alcohol-preferring and -nonpreferring rats

R L Bell et al. Pharmacol Biochem Behav. 2003 Apr.

Abstract

Selective breeding has been used to develop the alcohol-preferring (P) and -nonpreferring (NP) rats, with the P rat having lower CNS levels of dopamine (DA) and reduced DA innervation in the nucleus accumbens compared with the NP rat. The acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR are experimental behaviors altered by DA agonists. We examined whether functional differences in amphetamine (AMPH)-modified ASR and PPI exist between P and NP rats. AMPH [0.0 (saline), 1.0, 2.0, or 4.0 mg/kg] was injected 15 min prior to placement into a startle apparatus. After a 5-min habituation period, rats were given approximately twelve 95-, 105-, or 115-dB white-noise burst (ASR) and PPI trials. As adults, P rats were sensitive to AMPH potentiation of the ASR to a greater extent than NP rats. During adolescence, P and NP rats had similar levels of AMPH-potentiated ASR. As adults, NP rats displayed potentiated, rather than disrupted, PPI at the 1.0-mg/kg dose, whereas P rats displayed the expected disrupted PPI at the 4.0-mg/kg dose. As adolescents, NP rats did not display significant differences in PPI after AMPH, whereas P rats displayed dose-dependent disruption of PPI, which was significant at the 4.0-mg/kg dose. The limited effect of AMPH on increasing the ASR and the presence of AMPH-potentiated PPI at the lowest dose in the adult NP rat suggests reduced functioning of the interactions between DA circuits and the neurocircuitry mediating the ASR and PPI, compared with P rats. However, the neurocircuitry mediating PPI does not appear to be fully developed in the adolescent NP rat. The present findings also indicate that lower levels of DA content and immunoreactive fibers in the P rat may not reflect reduced DA neuronal activity, because the P rat displayed AMPH-potentiated ASR, and, at the highest dose, AMPH disruption of PPI during both adulthood and adolescence.

PubMed Disclaimer

Similar articles

Cited by

Publication types