Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;17(10):1307-9.
doi: 10.1096/fj.02-0760fje. Epub 2003 May 20.

Novel stimulatory actions of the phytoestrogen genistein: effects on the gain of cardiac excitation-contraction coupling

Affiliations

Novel stimulatory actions of the phytoestrogen genistein: effects on the gain of cardiac excitation-contraction coupling

Reginald Liew et al. FASEB J. 2003 Jul.

Abstract

Genistein, a phytoestrogen found abundantly in soy products, is thought to be cardioprotective, partly through its ability to act as a natural Ca2+ channel antagonist. However, the precise nature and significance of such direct cardiac actions remain obscure. We investigated the hypothesis that genistein exerts important additional actions on cardiac excitation-contraction coupling (ECC). Genistein acutely increased cell shortening and the Ca2+ transient in field stimulated guinea-pig ventricular myocytes despite potently inhibiting the L-type Ca2+ current, I(Ca,L). The specific phosphotyrosine phosphatase inhibitor, bpV(phen), diminished the stimulatory effects of genistein on myocyte contractility, suggesting that the mechanism partly involved tyrosine kinase inhibition. Genistein increased sarcoplasmic reticulum (SR) Ca2+ load as measured with a caffeine pulse in Na+-free/ Ca2+-free solution. Furthermore, in the continued presence of caffeine, genistein increased the time constant of decline of the caffeine-induced Ca2+ transient, implying impaired sarcolemmal Na+/Ca2+ exchanger function. Tetanization studies in intact myocytes revealed that 43% of cells exhibited increased myofilament Ca2+ sensitivity in the presence of genistein. These findings demonstrate novel cardiac actions of genistein on the SR Ca2+ load, Na+/Ca2+ exchanger, and myofilament Ca2+ sensitivity, which result in an overall increase in myocyte contractility and consequently the gain of ECC.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources