Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 1;278(31):28912-20.
doi: 10.1074/jbc.M304598200. Epub 2003 May 21.

Functional characterization of ERp18, a new endoplasmic reticulum-located thioredoxin superfamily member

Affiliations
Free article

Functional characterization of ERp18, a new endoplasmic reticulum-located thioredoxin superfamily member

Heli I Alanen et al. J Biol Chem. .
Free article

Abstract

Native disulfide bond formation in the endoplasmic reticulum is a critical process in the maturation of many secreted and outer membrane proteins. Although a large number of proteins have been implicated in this process, it is clear that our current understanding is far from complete. Here we describe the functional characterization of a new 18-kDa protein (ERp18) related to protein-disulfide isomerase. We show that ERp18 is located in the endoplasmic reticulum and that it contains a single catalytic domain with an unusual CGAC active site motif and a probable insertion between beta3 and alpha3 of the thioredoxin fold. From circular dichroism and NMR measurements, ERp18 is well structured and undergoes only a minor conformational change upon dithioldisulfide exchange in the active site. Guanidinium chloride denaturation curves indicate that the reduced form of the protein is more stable than the oxidized form, suggesting that it is involved in disulfide bond formation. Furthermore, in vitro ERp18 possesses significant peptide thiol-disulfide oxidase activity, which is dependent on the presence of both active site cysteine residues. This activity differs from that of the human PDI family in that under standard assay conditions it is limited by substrate oxidation and not by enzyme reoxidation. A putative physiological role for Erp18 in native disulfide bond formation is discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources