Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 May 21;433(3):597-614.
doi: 10.1016/0005-2736(76)90284-4.

Transport of 3-O-methyl D-glucose and beta-methyl D-glucoside by rabbit ileum

Transport of 3-O-methyl D-glucose and beta-methyl D-glucoside by rabbit ileum

G D Holman et al. Biochim Biophys Acta. .

Abstract

The intestinal transport of three actively transported sugars has been studied in order to determine mechanistic features that, (a) can be attributed to stereo-specific affinity and (b) are common. The apparent affinity constants at the brush-border indicate that sugars are selected in the order, beta-methyl glucose greater than D-galactose greater than 3-O-methyl glucose, (the Km values are 1.23, 5.0 and 18.1 mM, respectively.) At low substrate concentrations the Kt values for Na+ activation of sugar entry across the brush-border are: 27, 25, and 140 mequiv. for beta-methyl glucose, galactose and 3-O-methyl glucose, respectively. These kinetic parameters suggest that Na+, water, sugar and membrane-binding groups are all factors which determine selective affinity. In spite of these differences in operational affinity, all three sugars show a reciprocal change in brush-border entry and exit permeability as Ringer (Na) or (sugar) is increased. Estimates of the changes in convective velocity and in the diffusive velocity when the sugar concentration in the Ringer is raised reveal that with all three sugars, the fractional reduction in convective velocity is approximately equal to the (reduction of diffusive velocity)2. This is consistent with the view that the sugars move via pores in the brush-border by convective diffusion. Theophylline reduces the serosal border permeability to beta-methyl glucose and to 3-O-methyl glucose relatively by the same extent and consequently, increase the intracellular accumulation of these sugars. The permeability of the serosal border to beta-methyl glucose entry is lower than permeability of the serosal border to beta-methyl glucose exit, which suggested that beta-methyl glucose may be convected out of the cell across the lateral serosal border.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources