Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 6;305(3):566-72.
doi: 10.1016/s0006-291x(03)00826-x.

Carbonylation of ER chaperone proteins in aged mouse liver

Affiliations

Carbonylation of ER chaperone proteins in aged mouse liver

Jeffrey P Rabek et al. Biochem Biophys Res Commun. .

Abstract

Progressive accumulation of oxidative damage to macromolecules in aged tissues is thought to contribute to the decline in tissue function characteristic of the aged phenotype. Mitochondria are a major intracellular source of reactive oxygen species (ROS); however, other organelles are also endogenous sources of oxyradicals and oxidants, which can damage macromolecules. We, therefore, sought to examine the relationship between aging and oxidative damage to ER resident proteins, which exist in a strongly oxidizing environment necessary for disulfide bond formation. In these studies, we have fractionated young and aged liver homogenates, resolved the proteins by 2D gel electrophoresis, assayed for oxidative damage as indicated by protein carbonylation, and identified BiP/Grp78, protein disulfide isomerase (PDI), and calreticulin as exhibiting an age-associated increase in oxidative damage. Increased carbonylation of these key proteins in aged liver suggests an age-associated impairment in protein folding, disulfide crosslinking, and glycosylation in the aged mouse liver.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources