Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 13;975(1-2):37-47.
doi: 10.1016/s0006-8993(03)02545-9.

Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat

Affiliations

Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat

Zhengwei Cai et al. Brain Res. .

Abstract

Increasing data provide support for the hypothesis that inflammatory cytokines mediate inflammation-induced injury to developing white matter. In the present study, roles of tumor necrosis factor-alpha (TNFalpha) and interleukin-1 beta (IL-1beta) in mediating lipopolysaccharide (LPS)-induced brain injury were investigated by co-administration of LPS with IL-1 receptor antagonist (IL-1ra) or TNFalpha antibody in the 5-day-old rat brain. Intracerebral injection of LPS and other agents was performed in a stereotaxic apparatus at the location of 1.0 mm posterior and 1.0 mm lateral to the bregma, and 2.0 mm deep to the skull surface at the left hemisphere. Brain injury was examined in brain sections 3 and 11 days after LPS injection. LPS-induced inflammatory responses were evidenced by great increases in TNFalpha and IL-1beta concentrations in the neonatal rat brain 6 h after LPS injection. White matter rarefaction was observed in 71% (five out of seven) of the rat brains 3 days after LPS injection and bilateral ventricle dilation was found in 71% (five out of seven) of the P8 rat brains and in 100% of the P16 rat brains (four out of four). These alterations were not found in the control rat brains. No apparent histological changes in gray matter were observed in the LPS-injected rat brains. LPS injection also resulted in injuries to oligodendrocytes (OLs) and hypomyelination, as indicated by reduced immunostaining for O4 and myelin basic protein (MBP). Increased astrogliosis, as indicated by increased glial fibrillary acidic protein (GFAP) immunostaining, was also observed in the LPS-injected, but not the control rat brain. Co-administration of LPS with IL-1ra, but not with TNFalpha antibody, significantly attenuated LPS-induced white matter injury, as indicated by decreases in ventricle dilation, white matter rarefaction, GFAP positive staining and by improved O4 and MBP immunostaining. Co-administration of LPS with IL-1ra significantly reduced LPS-induced elevation of caspase-3 activity in the rat brain. While TNFalpha antibody had no effect on LPS-induced elevation of caspase-3 activity, co-administration of LPS with TNFalpha antibody partially, but significantly, decreased LPS-stimulated increase in IL-1beta in the neonatal rat brain. These data suggest that IL-1beta may play an important role in mediating LPS-induced brain injury and TNFalpha may have complicated, probably dual, effects in LPS-induced brain injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources