Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr:986:72-81.
doi: 10.1111/j.1749-6632.2003.tb07141.x.

Mutagenesis of residues involved in control of the Ca2+ entry pathway and conformational changes associated with Ca2+ binding in the SR Ca2+-ATPase

Affiliations

Mutagenesis of residues involved in control of the Ca2+ entry pathway and conformational changes associated with Ca2+ binding in the SR Ca2+-ATPase

Jens Peter Andersen et al. Ann N Y Acad Sci. 2003 Apr.

Abstract

Rapid kinetic measurements were used to study the rate of Ca(2+) dissociation from the high-affinity Ca(2+) sites of the dephosphoenzyme (i.e., from the E(1)Ca(2) form toward the cytoplasmic side) as well as the rate of Ca(2+) binding with associated conformational changes (E(2) --> E(1)Ca(2) transition) in the wild type and mutants of the sarcoplasmic reticulum Ca(2+)-ATPase expressed in mammalian cells. Cluster mutations as well as single mutations in transmembrane segment M3 resulted in conspicuous effects on the rate of Ca(2+) migration. Furthermore, mutation of Asp(59) in transmembrane segment M1 to arginine exerted a profound effect on Ca(2+) interaction. The data demonstrate an important role for M3 residues in control of the Ca(2+) entry pathway and provide functional evidence in support of a close relationship between this pathway and the water-accessible channel leading between transmembrane segments M1 and M3 in the thapsigargin stabilized E(2) structure. In addition, rapid kinetic measurements demonstrated that the hydrogen bond network involving Asp(813) of loop L6-7 and Lys(758) of M5 is important for the E(2) --> E(1)Ca(2) transition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources