Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Apr:986:420-7.
doi: 10.1111/j.1749-6632.2003.tb07224.x.

Structure/function studies of the gamma subunit of the Na,K-ATPase

Affiliations
Review

Structure/function studies of the gamma subunit of the Na,K-ATPase

Rhoda Blostein et al. Ann N Y Acad Sci. 2003 Apr.

Abstract

The Na,K-ATPase gamma subunit is present primarily in kidney as two splice variants, gammaa and gammab, which differ only at their extracellular N-termini. Two distinct effects of gamma are seen in biochemical Na,K-ATPase assays of mammalian (HeLa) cells transfected with gammaa or gammab, namely, (i) a decrease in K'(ATP) probably secondary to a shift in steady-state E(1) <--> E(2) poise in favor of E(1) and (ii) an increase in cytoplasmic K(+)/Na(+) antagonism seen as an increase in K'(Na) at high K(+) concentration. Mutagenesis experiments involving alterations in extramembranous regions of gamma indicate that different regions mediate the aforementioned distinct effects and that the effects appear to be long range. Studies of ouabain-sensitive fluxes with intact cells confirm the gamma effects seen with membranes and also suggest an additional effect (increase) in apparent affinity for extracellular K(+). Alteration in gamma function was also evidenced in the behavior of a G41 -->R mutation within the transmembrane domain of gamma. G41R is associated with autosomal dominant renal magnesium wasting. Our studies show that this mutation in the gammab variant retards trafficking of gamma, but not alphabeta pumps, to the cell surface and abolishes functional effects of gamma, consistent with the conclusion that the Mg(2+) transport defect is secondary to loss of gamma modulation of Na,K-ATPase function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources