Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Apr:986:570-8.
doi: 10.1111/j.1749-6632.2003.tb07255.x.

Mechanism of control of Na,K-ATPase in principal cells of the mammalian collecting duct

Affiliations
Review

Mechanism of control of Na,K-ATPase in principal cells of the mammalian collecting duct

Eric Féraille et al. Ann N Y Acad Sci. 2003 Apr.

Abstract

The collecting duct is the site of final Na reabsorption according to Na balance requirements. Using isolated rat cortical collecting ducts (CCD) and mpkCCD(cl4) cells, a mouse cortical collecting duct cell line, we have studied the physiological control of Na,K-ATPase, the key enzyme that energizes Na reabsorption. Aldosterone, a major regulator of Na transport by the collecting duct, stimulates Na,K-ATPase activity through both recruitment of intracellular pumps and increased total amounts of Na pump subunits. This effect is observed after a lag time of 1 hour and is independent of Na entry through ENaC, but requires de novo transcription and translation. Vasopressin and cAMP, its second messenger, stimulate Na,K-ATPase activity within minutes through translocation of Na pumps from a brefeldin A-sensitive intracellular pool to the plasma membrane. Dysregulation of collecting duct Na,K-ATPase activity is at least in part responsible of the Na retention observed in nephritic syndrome. In this setting, Na,K-ATPase activity and subunit synthesis are specifically increased in CCD. In conclusion, aldosterone, vasopressin, and intracellular Na control the cell surface expression of Na,K-ATPase and translocation from intracellular stores is a major mechanism of regulation of Na,K-ATPase activity in collecting duct principal cells.

PubMed Disclaimer

LinkOut - more resources