Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 15;278(33):31277-85.
doi: 10.1074/jbc.M300763200. Epub 2003 May 22.

Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells

Affiliations
Free article

Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells

Denis Mottet et al. J Biol Chem. .
Free article

Abstract

Hypoxia initiates an intracellular signaling pathway leading to the activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 activity is regulated through different mechanisms involving stabilization of HIF-1alpha, phosphorylations, modifications of redox conditions, and interactions with coactivators. However, it appears that some of these steps can be cell type-specific. Among them, the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the regulation of HIF-1 by hypoxia remains controversial. Here, we investigated the activation state of PI3K/Akt/glycogen synthase kinase 3beta (GSK3beta) in HepG2 cells. Increasing incubation times in hypoxia dramatically decreased both the phosphorylation of Akt and the inhibiting phosphorylation of GSK3beta. The PI3K/Akt pathway was necessary for HIF-1alpha stabilization early during hypoxia. Indeed, its inhibition was sufficient to decrease HIF-1alpha protein level after 5-h incubation in hypoxia. However, longer exposure (16 h) in hypoxia resulted in a decreased HIF-1alpha protein level compared with early exposure (5 h). At that time, Akt was no longer present or active, which resulted in a decrease in the inhibiting phosphorylation of GSK3beta on Ser-9 and hence in an increased GSK3beta activity. GSK3 inhibition reverted the effect of prolonged hypoxia on HIF-1alpha protein level; more stabilized HIF-1alpha was observed as well as increased HIF-1 transcriptional activity. Thus, a prolonged hypoxia activates GSK3beta, which results in decreased HIF-1alpha accumulation. In conclusion, hypoxia induced a biphasic effect on HIF-1alpha stabilization with accumulation in early hypoxia, which depends on an active PI3K/Akt pathway and an inactive GSK3beta, whereas prolonged hypoxia results in the inactivation of Akt and activation of GSK3beta, which then down-regulates the HIF-1 activity through down-regulation of HIF-1alpha accumulation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources