Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;446(4):447-54.
doi: 10.1007/s00424-003-1094-z. Epub 2003 May 23.

Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones

Affiliations

Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones

Natasha Solovyova et al. Pflugers Arch. 2003 Jul.

Abstract

We addressed the fundamentally important question of functional continuity of endoplasmic reticulum (ER) Ca(2+) store in nerve cells. In cultured rat dorsal root ganglion neurones we measured dynamic changes in free Ca(2+) concentration within the ER lumen ([Ca(2+)](L)) in response to activation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs). We found that both receptors co-exist in these neurones and their activation results in Ca(2+) release from the ER as judged by a decrease in [Ca(2+)](L). Depletion of Ca(2+) stores following an inhibition of sarco(endoplasmic)reticulum Ca(2+)-ATPase by thapsigargin or cyclopiazonic acid completely eliminated Ca(2+) release via both InsP(3)Rs and RyRs. Similarly, when the store was depleted by continuous activation of InsP(3)Rs, activation of RyRs (by caffeine or 0.5 microM ryanodine) failed to produce Ca(2+) release, and vice versa, when the stores were depleted by activators of RyRs, the InsP(3)-induced Ca(2+) release disappeared. We conclude that in mammalian neurones InsP(3)Rs and RyRs share the common continuous Ca(2+) pool associated with ER.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Neuron. 1998 Jul;21(1):13-26 - PubMed
    1. Nature. 1998 Dec 24-31;396(6713):757-60 - PubMed
    1. Nature. 1998 Dec 24-31;396(6713):753-6 - PubMed
    1. J Physiol. 1993 Sep;469:693-716 - PubMed
    1. Cell Calcium. 2002 Nov-Dec;32(5-6):231-4 - PubMed

Publication types

MeSH terms

LinkOut - more resources