Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 5;1604(2):125-33.
doi: 10.1016/s0005-2728(03)00043-4.

Stimulation of potassium cycling in mitochondria by long-chain fatty acids

Affiliations
Free article

Stimulation of potassium cycling in mitochondria by long-chain fatty acids

Peter Schönfeld et al. Biochim Biophys Acta. .
Free article

Abstract

Nonesterified long-chain fatty acids (myristic, palmitic, oleic and arachidonic), added at low amounts (around 20 nmol/mg protein) to rat liver mitochondria, energized by respiratory substrates and suspended in isotonic solutions of KCl, NaCl, RbCl or CsCl, adjusted to pH 8.0, induce a large-scale swelling followed by a spontaneous contraction. Such swelling does not occur in alkaline solutions of choline chloride or potassium gluconate or sucrose. These changes in the matrix volume reflect a net uptake, followed by net extrusion, of KCl (or another alkali metal chloride) and are characterized by the following features: (1) Lowering of medium pH from 8.0 to 7.2 results in a disappearance of the swelling-contraction reaction. (2) The contraction phase disappears when the respiration is blocked by antimycin A. (3) Quinine, an inhibitor of the K(+)/H(+) antiporter, does not affect swelling but suppresses the contraction phase. (4) The swelling phase is accompanied by a decrease of the transmembrane potential and an increase of respiration, whereas the contraction is followed by an increase of the membrane potential and a decrease of oxygen uptake. (5) Nigericin, a catalyst of the K(+)/H(+) exchange, prevents or partly reverses the swelling and partly restores the depressed membrane potential. These results indicate that long-chain fatty acids activate in liver mitochondria suspended in alkaline saline media the uniporter of monovalent alkali metal cations, the K(+)/H(+) antiporter and the inner membrane anion channel. These effects are presumably related to depletion of mitochondrial Mg(2+), as reported previously [Arch. Biochem. Biophys. 403 (2002) 16], and are responsible for the energy-dissipating K(+) cycling. The uniporter and the K(+)/H(+) antiporter are in different ways activated by membrane stretching and/or unfolding, resulting in swelling followed by contraction.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources