Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;27(5):743-55.
doi: 10.1097/01.ALC.0000065722.31109.A1.

Ethanol potentiation of glycine receptors expressed in Xenopus oocytes antagonized by increased atmospheric pressure

Affiliations

Ethanol potentiation of glycine receptors expressed in Xenopus oocytes antagonized by increased atmospheric pressure

Daryl L Davies et al. Alcohol Clin Exp Res. 2003 May.

Abstract

Background: Behavioral and biochemical studies indicate that exposure to 12 times normal atmospheric pressure (12 ATA) of helium-oxygen gas (heliox) is a direct, selective ethanol antagonist. The current study begins to test the hypothesis that ethanol acts by a common mechanism on ligand-gated ion channels by expanding previous hyperbaric investigations on gamma-aminobutyric acid type A (GABA(A)) receptors (GABA(A)Rs) at the biochemical level to alpha(1)glycine (GlyRs) expressed in Xenopus oocytes.

Methods: Oocytes expressing wild-type alpha(1) homomeric GlyRs were voltage-clamped (-70 mV) and tested in the presence of glycine (EC(2)) +/- ethanol (50-200 mM) under 1 ATA control and 3 to 12 ATA heliox conditions. Glycine concentration response curves, strychnine/glycine interactions, and zinc (Zn2+) modulation of GlyR function was also tested.

Results: Pressure reversibly antagonized the action of ethanol. The degree of antagonism increased as pressure increased. Pressure did not significantly alter the effects of glycine, strychnine, or Zn2+, indicating that ethanol antagonism by pressure cannot be attributed to alterations by pressure of normal GlyR function. The antagonism did not reflect tolerance to ethanol, receptor desensitization, or receptor rundown.

Conclusion: This is the first use of hyperbarics to investigate the mechanism of action of ethanol in recombinant receptors. The findings indicate that pressure directly and selectively antagonizes ethanol potentiation of alpha(1)GlyR function in a reversible and concentration- and pressure-dependent manner. The sensitivity of ethanol potentiation of GlyR function to pressure antagonism indicates that ethanol acts by a common, pressure-antagonism-sensitive mechanism in GlyRs and GABA(A)Rs. The findings also support the hypothesis that ethanol potentiation of GlyR function plays a role in mediating the sedative-hypnotic effects of ethanol.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources