Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jun;17(6):648-55.
doi: 10.1002/jmri.10316.

Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5T and 3.0T

Affiliations
Comparative Study

Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5T and 3.0T

Robert L Greenman et al. J Magn Reson Imaging. 2003 Jun.

Abstract

Purpose: To evaluate the effectiveness of blood suppression and the quality of black-blood cardiac images acquired at 3.0 Tesla using a double-inversion recovery fast spin-echo sequence by comparing data acquired at 3.0T to data acquired at 1.5T.

Materials and methods: Black-blood T2-weighted fast spin-echo images of the heart were acquired from five normal volunteers at 1.5T and five normal volunteers at 3.0T. Region-of-interest signal intensity measurements were performed at several locations in the suppressed blood regions of the left and right ventricles and around the left ventricle walls to assess the effectiveness and uniformity of the blood suppression, the myocardial signal-to-noise ratio (SNR), and the signal uniformity at both field strengths. B1 field maps were produced in phantoms and in subjects at both field strengths.

Results: Blood suppression performance is equivalent at 1.5T and 3.0T. The improvement in SNR at 3.0T compared with 1.5T is less than has been predicted in previous studies. The signal uniformity is significantly poorer at 3.0T than at 1.5T due to dielectric effects and shorter radio frequency wavelengths (P < 0.005).

Conclusion: Spin-echo and spin-echo echo-train sequences that perform well at 1.5T will produce large signal variations in the chest cavity at 3.0T without modifications. B1 insensitive methods must be explored and implemented for spin-echo sequences to fully realize the advantages of using these sequences for high-field MRI.

PubMed Disclaimer

Publication types

LinkOut - more resources