Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun 3;42(21):6436-45.
doi: 10.1021/bi034163m.

Characterization of two independent amino acid substitutions that disrupt the DNA repair functions of the yeast Apn1

Affiliations

Characterization of two independent amino acid substitutions that disrupt the DNA repair functions of the yeast Apn1

Arshad Jilani et al. Biochemistry. .

Abstract

The members of the Endo IV family of DNA repair enzymes, including Saccharomyces cerevisiae Apn1 and Escherichia coli endonuclease IV, possess the capacity to cleave abasic sites and to remove 3'-blocking groups at single-strand breaks via apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase activities, respectively. In addition, Endo IV family members are able to recognize and incise oxidative base damages on the 5'-side of such lesions. We previously identified eight amino acid substitutions that prevent E. coli endonuclease IV from repairing damaged DNA in vivo. Two of these substitutions were glycine replacements of Glu145 and Asp179. Both Glu145 and Asp179 are among nine amino acid residues within the active site pocket of endonuclease IV that coordinate the position of a trinuclear Zn cluster required for efficient phosphodiester bond cleavage. We now report the first structure-function analysis of the eukaryotic counterpart of endonuclease IV, yeast Apn1. We show that glycine substitutions at the corresponding conserved amino acid residues of yeast Apn1, i.e., Glu158 and Asp192, abolish the biological function of this enzyme. However, these Apn1 variants do not exhibit the same characteristics as the corresponding E. coli mutants. Indeed, the Apn1 Glu158Gly mutant, but not the E. coli endonuclease IV Glu145Gly mutant, is able to bind DNA. Moreover, Apn1 Asp192Gly completely lacks enzymatic activity, while the activity of the E. coli counterpart Asp179Gly is reduced by approximately 40-fold. The data suggest that although yeast Apn1 and E. coli endonuclease IV exhibit a high degree of structural and functional similarity, differences exist within the active site pockets of these two enzymes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources