Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;34(1):19-26.
doi: 10.1016/s0143-4160(03)00018-6.

Cardiac excitation-contraction coupling in the absence of Na(+) - Ca2+ exchange

Affiliations

Cardiac excitation-contraction coupling in the absence of Na(+) - Ca2+ exchange

Hannes Reuter et al. Cell Calcium. 2003 Jul.

Abstract

We investigate cardiac excitation-contraction coupling in the absence of sarcolemmal Na(+) - Ca(2+) exchange using NCX1 knock out mice. Knock out of NCX1 is embryonic lethal, and we measure Ca(2+) transients and contractions in heart tubes from embryos at day 9.5 post coitum. Immunoblot and electron microscopy both indicate that sarcoplasmic reticular membranes are diminished in the knock out (NCX(-/-)) heart tubes. Both Ni(2+) and nifedipine block excitation-contraction coupling in NCX-containing (NCX+) and NCX(-/-) heart tubes indicating an essential role for the L-type Ca(2+) current. Under basal conditions (1Hz stimulation), the NCX(-/-) heart tubes have normal Ca(2+) transients but are unable to maintain homeostasis when Ca(2+) fluxes are increased by various interventions (increased stimulation frequency, caffeine, isoproterenol). In each case, the NCX(-/-) heart tubes respond to the intervention in a more deleterious manner (increased diastolic Ca(2+), decreased Ca(2+) transient) than the NCX+ heart tubes. Expression of the sarcolemmal Ca(2+) pump was not upregulated. The sarcolemmal Ca(2+) pump, however, was able to compensate surprisingly well for the absence of Na(+) - Ca(2+) exchange under basal conditions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources