Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;81(4):350-8.
doi: 10.1139/y03-025.

A neuroendocrine model for prolactin as the key mediator of seasonal breeding in birds under long- and short-day photoperiods

Affiliations

A neuroendocrine model for prolactin as the key mediator of seasonal breeding in birds under long- and short-day photoperiods

Peter J Sharp et al. Can J Physiol Pharmacol. 2003 Apr.

Abstract

Seasonal breeding is associated with sequential increases in plasma luteinizing hormone (LH) and prolactin in the short-day breeding emu, and in long-day breeding birds that terminate breeding by the development of reproductive photorefractoriness. A model of the avian neuroendocrine photoperiodic reproductive response is proposed, incorporating a role for prolactin, to account for neuroendocrine mechanisms controlling both long- and short-day breeding. The breeding season terminates after circulating concentrations of prolactin increase above a critical threshold to depress gonadotropin releasing hormone (GnRH) neuronal and gonadotrope (LH) activity. Subsequently, photorefractoriness develops for prolactin secretion and for LH secretion, independently of high plasma prolactin. The breeding season in the emu is advanced compared with long-day breeders, because after photorefractiness for both LH and prolactin secretion is dissipated, plasma concentrations of both hormones increase to maximum values while days are still short.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources