Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003;9(14):1121-7.
doi: 10.2174/1381612033455008.

Pleiotropic effects of cytokines on acute myocardial infarction: G-CSF as a novel therapy for acute myocardial infarction

Affiliations
Review

Pleiotropic effects of cytokines on acute myocardial infarction: G-CSF as a novel therapy for acute myocardial infarction

Hiroyuki Takano et al. Curr Pharm Des. 2003.

Abstract

Many cytokines have been reported to be increased in human and animal models with cardiovascular diseases. Myocardial infarction (MI) is accompanied with an inflammatory reaction which induces cardiac dysfunction and remodeling. The inflammatory reaction has been investigated in animal models of MI or myocardial ischemia-reperfusion injury. The mechanisms by which cytokine cascade is activated in the infarcted myocardium have been recently elucidated. Several hematopoietic growth factors including interleukin-3 (IL-3), IL-6, granulocyte-macrophage colony-stimulating factors (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and stem cell factor (SCF) have been reported to be positive regulators of granulopoiesis and act at different stages of myeloid cell development. G-CSF plays a critical role in regulation of proliferation, differentiation, and survival of myeloid progenitor cells. G-CSF also causes a marked increase in the release of hematopoietic stem cells (HSCs) into the peripheral blood circulation, a process termed mobilization. Although cardiac myocytes have been considered as terminally differentiated cells, it has been recently reported that there are many proliferating cardiac myocytes after MI in human heart. After it was demonstrated that bone marrow stem cells (BMSCs) can differentiate into cardiac myocytes, myocardial regeneration has been widely investigated. Recently, G-CSF has been reported to improve cardiac function and reduces mortality after acute MI. Although the mechanism by which G-CSF ameliorates cardiac dysfunction is not fully understood, there is the possibility that G-CSF may regenerate cardiac myocytes and blood vessels through mobilization of BMSCs. In the future, cytokine-mediated regeneration therapy may become to be a novel therapeutic strategy for MI.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances