Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jul;3(4):263-70.
doi: 10.2174/1568011033482413.

Implication of raft microdomains in drug induced apoptosis

Affiliations
Review

Implication of raft microdomains in drug induced apoptosis

Christine Bezombes et al. Curr Med Chem Anticancer Agents. 2003 Jul.

Abstract

DNA damaging agents such as 1-beta-D-arabinofuranosylcytosine (Ara-C) and daunorubicin (DNR) are widely used in the treatment of acute nonlymphocytic leukemia. These drugs have, of course, been the objects of intense basic research, as well as preclinical and clinical study. Although specific biochemical lesions (DNA damage) have been associated with Ara-C- and DNR-mediated cytotoxicity, the pathways leading to the induction of apoptosis remain ill defined. This standpoint has forced investigators to explore a new concept in cell response to cytotoxic stress: apoptosis signaling. The recent identification of a ceramide (CER) mediated apoptotic signaling pathway triggered by antitumor agents offers a new perspective for the treatment of neoplastic cells. Indeed, these agents have been shown to induce apoptosis through the activation of a sphingomyelinase (SMase) responsible for the hydrolysis of sphingomyelin (SM) and the generation of CER. The latter acts as a potent apoptosis mediator, triggering several downstream signaling pathways among which the stress-activated protein kinase cascade (MEKK1-SEK1-SAP/JNK) plays a critical role in apoptosis induction. However, the spacio-temporal organization of the key early signaling events is unclear. The present review delineates what appears to be a critical factor in apoptosis signaling: sphingomyelin enriched plasma membrane rafts. The apparent topological partitioning between DNA damage and apoptosis signaling (integrated into specialized plasma membrane domains) is discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources