Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 28;222(2):273-80.
doi: 10.1016/S0378-1097(03)00313-6.

A method for allelic replacement in Francisella tularensis

Affiliations

A method for allelic replacement in Francisella tularensis

Igor Golovliov et al. FEMS Microbiol Lett. .

Abstract

A vector for mutagenesis of Francisella tularensis was constructed based on the pUC19 plasmid. By inserting the sacB gene of Bacillus subtilis, oriT of plasmid RP4, and a chloramphenicol resistance gene of Shigella flexneri, a vector, pPV, was obtained that allowed specific mutagenesis. A protocol was developed that allowed introduction of the vector into the live vaccine strain, LVS, of F. tularensis by conjugation. As a proof of principle, we aimed to develop a specific mutant defective in expression of a 23-kDa protein (iglC) that we previously have shown to be prominently upregulated during intracellular growth of F. tularensis. A plasmid designated pPV-DeltaiglC was developed that contained only the regions flanking the encoding gene, iglC. By a double crossover event, the chromosomal iglC gene was deleted. However, the resulting strain, denoted DeltaiglC1, still had an intact iglC gene. Southern blot analysis verified that LVS harbors two copies for the iglC gene. The mutagenesis was therefore repeated and a mutant defective in both iglC alleles, designated DeltaiglC1+2, was obtained. The DeltaiglC1+2 strain, in contrast to DeltaiglC1, was shown to display impaired intracellular macrophage growth and to be attenuated for virulence in mice. The developed genetic system has the potential to provide a tool to elucidate virulence mechanisms of F. tularensis and the specific F. tularensis mutant illustrates the critical role of the 23-kDa protein, iglC, for the virulence of F. tularensis LVS.

PubMed Disclaimer

Publication types

LinkOut - more resources