Animal models reveal pathophysiologies of tyrosinemias
- PMID: 12771366
- DOI: 10.1093/jn/133.6.2063S
Animal models reveal pathophysiologies of tyrosinemias
Abstract
The activity of the enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) is regulated by transcription factors. Mutations in the HPD locus are related to two known distinct diseases: hereditary tyrosinemia type 3 and hawkinsinuria. HPD-deficient mice are a good model with which to examine the biological effects of 4-hydroxyphenylpyruvic acid, which is a keto acid that causes no apparent visceral damage. In contrast, hereditary tyrosinemia type 1, a genetic disease caused by a deficiency of fumarylacetoacetate hydrolase (FAH), induces severe visceral injuries. Mice with FAH deficiency are lethal after birth; thus, efforts to elucidate the mechanisms of the disease process have been impeded. The use of Fah(-/-) Hpd(-/-) double-mutant mice has enabled studies on tyrosinemias, and essential features of visceral injury have been reveale.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous