Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2003 May;31(5):1306-11.
doi: 10.1097/01.CCM.0000063284.92122.0E.

Mechanical effects of airway humidification devices in difficult to wean patients

Affiliations
Clinical Trial

Mechanical effects of airway humidification devices in difficult to wean patients

Christophe Girault et al. Crit Care Med. 2003 May.

Abstract

Objective: To evaluate the influence of airway humidification devices on the efficacy of ventilation in difficult to wean patients.

Design: A prospective, randomized, controlled physiologic study.

Setting: A 22-bed medical intensive care unit in a university hospital.

Patients: Chronic respiratory failure patients.

Interventions: Performances of a heated humidifier and a heat and moisture exchanger were evaluated on diaphragmatic muscle activity, breathing pattern, gas exchange, and respiratory comfort during weaning from mechanical ventilation by using pressure support ventilation. Eleven patients with chronic respiratory failure were submitted to four pressure support ventilation sequences by using the heated humidifier and the heat and moisture exchanger at two different levels of pressure support ventilation (7 and 15 cm H(2)O).

Measurement and main results: Compared with the heated humidifier and regardless of the pressure support ventilation level used, the heat and moisture exchanger significantly increased all of the inspiratory effort variables (inspiratory work of breathing expressed in J/L and J/min, pressure time product, changes in esophageal pressure, and transdiaphragmatic pressure; p <.05) and dynamic intrinsic positive end-expiratory pressure (p <.05). Similarly, the heat and moisture exchanger produced a significant increase in Paco(2) (p <.01) responsible for severe respiratory acidosis (p <.05), which was insufficiently compensated for despite a significant increase in minute ventilation (p <.05). This resulted in respiratory discomfort for all patients with the heat and moisture exchanger (p <.01). Adverse effects were partially counterbalanced by increasing the pressure support ventilation level with the heat and moisture exchanger by >or=8 cm H(2)O.

Conclusions: The type of airway humidification device used may negatively influence the mechanical efficacy of ventilation and, unless the pressure support ventilation level is considerably increased, the use of a heat and moisture exchanger should not be recommended in difficult or potentially difficult to wean patients with chronic respiratory failure.

PubMed Disclaimer

Comment in

MeSH terms