Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;73(6):713-21.
doi: 10.1189/jlb.0802397.

Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice

Affiliations

Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice

Zi-Qing Lin et al. J Leukoc Biol. 2003 Jun.

Abstract

To clarify interleukin (IL)-6 roles in wound healing, we prepared skin excisions in wild-type (WT) and IL-6-deficient BALB/c [knockout (KO)] mice. In WT mice, the wound area was reduced to 50% of original size at 6 days after injury. Microscopically, leukocyte infiltration was evident at wound sites. Furthermore, the re-epithelialization rate was approximately 80% at 6 days after injury with increases in angiogenesis and hydroxyproline contents. The gene expression of IL-1, chemokines, adhesion molecules, transforming growth factor-beta1, and vascular endothelial growth factor was enhanced at the wound sites. In contrast, the enhanced expression of these genes was significantly reduced in KO mice. Moreover, in KO mice, the reduction of wound area was delayed with attenuated leukocyte infiltration, re-epithelialization, angiogenesis, and collagen accumulation. Finally, the administration of a neutralizing anti-IL-6 monoclonal antibody significantly delayed wound closure in WT mice. These observations suggest that IL-6 has crucial roles in wound healing, probably by regulating leukocyte infiltration, angiogenesis, and collagen accumulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources