Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Apr;121(4):203-10.
doi: 10.1254/fpj.121.203.

[Ryanodine receptor and junctional membrane structure]

[Article in Japanese]
Affiliations
Review

[Ryanodine receptor and junctional membrane structure]

[Article in Japanese]
Hiroshi Takeshima. Nihon Yakurigaku Zasshi. 2003 Apr.

Abstract

In excitable cell types, activation of cell-surface Ca(2+) channels triggers Ca(2+) release from the endplasmic or sarcoplasmic reticulum (ER/SR). This Ca(2+) signal amplification, termed Ca(2+)-induced or voltage-induced Ca(2+) release (CICR/VICR), requires the ryanodine receptor as an intracellular Ca(2+) channel, which is predominantly localized in the junctional membrane complex between the plasma membrane and the ER/SR. Junctophilin is an ER/SR membrane protein that contributes to the formation of the junctional membrane structure. Ryanodine receptor and junctophilin subtypes are derived from distinct genes and show different tissue-specific expression. Recent gene-knockout studies have defined physiological functions of both Ca(2+) release via ryanodine receptors and junctional membrane structures constituted by junctophilins in excitable cells. Moreover, several human genetic diseases are caused by mutations at the ryanodine receptor and junctophilin subtype genes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms