From 1/f noise to multifractal cascades in heartbeat dynamics
- PMID: 12779503
- DOI: 10.1063/1.1395631
From 1/f noise to multifractal cascades in heartbeat dynamics
Abstract
We explore the degree to which concepts developed in statistical physics can be usefully applied to physiological signals. We illustrate the problems related to physiologic signal analysis with representative examples of human heartbeat dynamics under healthy and pathologic conditions. We first review recent progress based on two analysis methods, power spectrum and detrended fluctuation analysis, used to quantify long-range power-law correlations in noisy heartbeat fluctuations. The finding of power-law correlations indicates presence of scale-invariant, fractal structures in the human heartbeat. These fractal structures are represented by self-affine cascades of beat-to-beat fluctuations revealed by wavelet decomposition at different time scales. We then describe very recent work that quantifies multifractal features in these cascades, and the discovery that the multifractal structure of healthy dynamics is lost with congestive heart failure. The analytic tools we discuss may be used on a wide range of physiologic signals. (c) 2001 American Institute of Physics.
Similar articles
-
A method for estimating long-range power law correlations from the electroencephalogram.Biol Psychol. 2004 Mar;66(1):79-89. doi: 10.1016/j.biopsycho.2003.09.001. Biol Psychol. 2004. PMID: 15019172
-
Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series.Chaos. 1995;5(1):82-7. doi: 10.1063/1.166141. Chaos. 1995. PMID: 11538314
-
Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis.Nature. 1996 Sep 26;383(6598):323-7. doi: 10.1038/383323a0. Nature. 1996. PMID: 8848043
-
Multifractal dynamics in the emergence of cognitive structure.Top Cogn Sci. 2012 Jan;4(1):51-62. doi: 10.1111/j.1756-8765.2011.01162.x. Epub 2011 Oct 24. Top Cogn Sci. 2012. PMID: 22253177 Review.
-
Multifractal Analysis in Neuroimaging.Adv Neurobiol. 2024;36:79-93. doi: 10.1007/978-3-031-47606-8_4. Adv Neurobiol. 2024. PMID: 38468028 Review.
Cited by
-
Influence of age and aerobic fitness on the multifractal characteristics of electrocardiographic RR time-series.Front Physiol. 2013 May 13;4:100. doi: 10.3389/fphys.2013.00100. eCollection 2013. Front Physiol. 2013. PMID: 23717283 Free PMC article.
-
Network Physiology of Exercise: Beyond Molecular and Omics Perspectives.Sports Med Open. 2022 Sep 23;8(1):119. doi: 10.1186/s40798-022-00512-0. Sports Med Open. 2022. PMID: 36138329 Free PMC article.
-
Taming the Unknown Unknowns in Complex Systems: Challenges and Opportunities for Modeling, Analysis and Control of Complex (Biological) Collectives.Front Physiol. 2019 Dec 3;10:1452. doi: 10.3389/fphys.2019.01452. eCollection 2019. Front Physiol. 2019. PMID: 31849703 Free PMC article.
-
Subthreshold Vibration Influences Standing Balance but Has Unclear Impact on Somatosensation in Persons With Transtibial Amputations.Front Physiol. 2022 Feb 2;13:810079. doi: 10.3389/fphys.2022.810079. eCollection 2022. Front Physiol. 2022. PMID: 35185618 Free PMC article.
-
Predictive Capacity of Beat-to-Beat Blood Pressure Variability for Cardioautonomic and Vascular Dysfunction in Early Metabolic Challenge.Front Pharmacol. 2022 Jun 24;13:902582. doi: 10.3389/fphar.2022.902582. eCollection 2022. Front Pharmacol. 2022. PMID: 35814210 Free PMC article.
LinkOut - more resources
Full Text Sources