Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;21(4):199-208.
doi: 10.1016/s0736-5748(03)00036-4.

Ventrally emigrating neural tube cells migrate into the developing vestibulocochlear nerve and otic vesicle

Affiliations

Ventrally emigrating neural tube cells migrate into the developing vestibulocochlear nerve and otic vesicle

M M Ali et al. Int J Dev Neurosci. 2003 Jun.

Abstract

Virtually all cell types in the inner ear develop from the cells of the otic vesicle. The otic vesicle is formed by the invagination of non-neural ectodermal cells known as the otic placode. We investigated whether a recently described cell population, originating from the ventral part of the hindbrain neural tube known as the ventrally emigrating neural tube (VENT) cells, also contributes cells to the otic vesicle. The ventral hindbrain neural tube cells were labeled with the fluorescent vital dye DiI or replication-deficient retroviruses containing the LacZ gene in chick embryos on embryonic day 2, after the emigration of neural crest from this region. One day later, the labeled cells were detected only in the hindbrain neural tube. Shortly thereafter, the labeled cells began to appear in the eighth (vestibulocochlear) cranial nerve and otic vesicle. From embryonic day 3.5-5, the labeled cells were detected in the major derivatives of the otic vesicle, i.e. the endolymphatic duct, semicircular canals, utricle, saccule, cochlea, and vestibulocochlear ganglion. That the emigrated cells originated from the ventral part of the hindbrain neural tube was confirmed by focal application of DiI impregnated filter paper and with quail chimeras. It is concluded that, in addition to the otic placode cells, the otic vesicle also contains the ventrally emigrating neural tube cells, and that both cell populations contribute to the structures and cell types in the inner ear. It is well known that inductive signals from the hindbrain are required for the morphogenesis of the inner ear. The migration of the hindbrain neural tube cells into the otic vesicle raises the possibility that the inductive effect of the hindbrain might be mediated, at least in part, by the ventrally emigrating neural tube cells and that, therefore, a mechanism exists that involves cells rather than diffusible molecules only.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources