Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 30;203(1-2):147-53.
doi: 10.1016/s0303-7207(03)00087-x.

Chronic hypoxia activates a local angiotensin-generating system in rat carotid body

Affiliations

Chronic hypoxia activates a local angiotensin-generating system in rat carotid body

Siu Yin Lam et al. Mol Cell Endocrinol. .

Abstract

Evidence exists for the presence of a functional angiotensin system in the carotid body, which can modulate the excitability of the carotid body chemoreceptors. In the present study, the effect of chronic hypoxia on the expression and localization of the angiotensinogen (AGT) and angiotensin-converting enzyme (ACE), the two critical components of an intrinsic angiotensin-generating system in the rat carotid body, are investigated by in situ hybridization histochemistry, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. In situ hybridization showed that the messenger RNA (mRNA) expression of AGT was localized within the type-I glomus cells of the carotid body, which was subjected to be upregulated under the stress of chronic hypoxia. RT-PCR further confirmed a significant increase in the expression of AGT mRNA by chronic hypoxia. Consistently, Western blot analysis demonstrated that chronic hypoxia could elicit the upregulation of AGT protein in chronically hypoxic carotid bodies when compared with their normoxic controls. On the other hand, there was a slight but significant increase in ACE mRNA expression during chronic hypoxia. This study suggests that chronic hypoxia can activate a local angiotensin-generating system in the carotid body, notably its obligatory component AGT. The activation of such an intrinsic, angiotensin-generating system in the carotid body during chronic hypoxia should be important in the modulation of cardiopulmonary adaptation in the hypoxic ventilatory response and the electrolyte as well as water homeostasis.

PubMed Disclaimer

Publication types

LinkOut - more resources