Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;53(6):781-7.
doi: 10.1002/ana.10548.

Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA

Affiliations

Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA

Pedro Gonzalez-Alegre et al. Ann Neurol. 2003 Jun.

Abstract

A three-nucleotide (GAG) deletion in the TOR1A gene is the most common cause of inherited dystonia, DYT1. Because the mutant protein, TorsinA (TA), is thought to act in a dominant manner to cause disease, inhibiting expression from the mutant gene represents a potentially powerful therapeutic strategy. In an effort to develop therapy for this disease, we tested whether small interfering RNA (siRNA) could selectively silence expression of mutant TA. Exploiting the three-base pair difference between wild-type and mutant alleles, we designed siRNAs to silence expression of mutant, wild-type, or both forms of TA. In transfected cells, siRNA successfully suppressed wild-type or mutant TA in an allele-specific manner: for example, mutant-specific siRNA reduced the levels of mutant TA to less than 1% of controls with minimal effect on wild-type TA expression. In cells expressing both alleles, thus simulating the heterozygous state, siRNA-mediated suppression remained robust and allele specific. Our siRNA studies demonstrate allele-specific targeting of a dominant neurogenetic disease gene and suggest the broad therapeutic potential of siRNA for DYT1 dystonia and other dominantly inherited neurological diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources