Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;89(6):3029-38.
doi: 10.1152/jn.00601.2002.

Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons

Affiliations
Free article

Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons

Eduardo D Martín et al. J Neurophysiol. 2003 Jun.
Free article

Abstract

We report a new form of long-term potentiation (LTP) in Schaffer collateral (SC)-CA1 pyramidal neuron synapses that originates presynaptically and does not require N-methyl-d-aspartate (NMDA) receptor activation nor increases in postsynaptic-free Ca2+. Using rat hippocampal slices, application of a brief "pulse" of caffeine in the bath evoked a nondecremental LTP (CAFLTP) of SC excitatory postsynaptic currents. An increased probability of transmitter release paralleled the CAFLTP, suggesting that it originated presynaptically. The P1 adenosine receptor antagonist 8-cyclopentyltheophylline and the P2 purinoreceptor antagonists suramin and piridoxal-5'-phosphate-azophenyl 2',4'-disulphonate blocked the CAFLTP. Inhibition of Ca2+ release from caffeine/ryanodine stores by bath-applied ryanodine inhibited the CAFLTP, but ryanodine in the pipette solution was ineffective, suggesting a presynaptic effect of ryanodine. Previous induction of the "classical" LTP did not prevent the CAFLTP, suggesting that the LTP and the CAFLTP have different underlying cellular mechanisms. The CAFLTP is insensitive to the block of NMDA receptors by 2-amino-5-phosphonopentanoic acid and to Ca2+ chelation with intracellular 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, indicating that neither postsynaptic NMDA receptors nor increases in cytosolic-free Ca2+ participate in the CAFLTP. We conclude that the CAFLTP requires the interaction of caffeine with presynaptic P1, P2 purinoreceptors, and ryanodine receptors and is caused by an increased probability of glutamate release at SC terminals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources