Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 15;116(Pt 14):2999-3007.
doi: 10.1242/jcs.00601. Epub 2003 Jun 3.

The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing

Affiliations

The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing

Xue Cai et al. J Cell Sci. .

Abstract

The faithful transmission of chromosomes during mitosis and meiosis requires the establishment and subsequent release of cohesion between replicated chromosomes. Sister chromatid cohesion is mediated, in large part, by the cohesin complex, which consists of four highly conserved proteins: SMC1, SMC3, SCC1/REC8 and SCC3. Mitotic cohesin complexes contain SSC1, whereas meiotic cohesin complexes contain the related REC8 protein. As part of studies to identify and characterize proteins required for meiosis in plants, we previously identified a putative Arabidopsis REC8 homolog, referred to as syn1. Preliminary cytological studies indicated that syn1 plants exhibit defects in meiotic chromosome cohesion and condensation that result in fragmentation of the chromosomes and the formation of polyads. In the experiments presented here we show that SYN1 encodes a protein that localizes to arms of meiotic chromosomes from approximately meiotic interphase to anaphase I. The protein is not detected at the centromeres or after metaphase I. Furthermore, fluorescence in situ hybridization experiments on microsporocytes from syn1 plants demonstrate that the mutation eliminates arm cohesion as early as interphase, whereas centromere cohesion is maintained until approximately anaphase I. These results indicate that although the main role of SYN1 is in chromosome arm cohesion, it is also important for maintaining cohesion at the centromeres during late stages of meiosis I.

PubMed Disclaimer

Similar articles

Cited by

Publication types