Respiratory rhythmicity in the cat
- PMID: 1278448
Respiratory rhythmicity in the cat
Abstract
Brain stem respiratory neuron activity in the cat was studied in relation to efferent outflow (phrenic discharge) under the influence of several forcing inputs: 1) CO2 tension: hypocapnia produces disappearance of firing in some neurons, and conversion of respiratory-modulated to continuous (tonic) firing in others. 2) Lung inflation: during the Bruer-Hering reflex, some neurons have "classical" responses and others have "paradoxical" responses (i.e., opposite in direction to peripheral discharge). 3) Electrical stimulation: stimulus trains to the pneumotaxic center region (rostral lateral pons) produce phase-switching, whose threshold is: a) sharp (indicating action of positive-feedback mechanisms), and b) dependent on timing of stimulus delivery (indicating continuous excitability changes during each respiratory phase). Auto- and crosscorrelation analysis revealed the existence of short-term interactions between: a) medullary inspiratory (I) neurons and phrenic motoneurons; b) pairs of medullary I neurons; c) medullary I neurons and expiratory (E) neurons. A model of the respiratory oscillator is presented, in which the processes of conversion of tonic to phasic activity and switching of the respiratory phases are explained by recurrent excitatory and inhibitory loops.
Publication types
MeSH terms
Substances
LinkOut - more resources
Miscellaneous