Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun;270(12):2593-604.
doi: 10.1046/j.1432-1033.2003.03630.x.

AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death

Affiliations
Free article

AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death

Beatrice Belenghi et al. Eur J Biochem. 2003 Jun.
Free article

Abstract

In plants, cysteine protease inhibitors are involved in the regulation of protein turnover and play an important role in resistance against insects and pathogens. AtCYS1 from Arabidopsis thaliana encodes a protein of 102 amino acids that contains the conserved motif of cysteine protease inhibitors belonging to the cystatin superfamily (Gln-Val-Val-Ala-Gly). Recombinant A. thaliana cystatin-1 (AtCYS1) was expressed in Escherichia coli and purified. AtCYS1 inhibits the catalytic activity of papain (Kd = 4.0 x 10-2 micro m, at pH 7.0 and 25 degrees C), generally taken as a molecular model of cysteine proteases. The molecular bases for papain inhibition by AtCYS1 have been analysed taking into account the three-dimensional structure of the papain-stefin B complex. AtCYS1 is constitutively expressed in roots and in developing siliques of A. thaliana. In leaves, AtCYS1 is strongly induced by wounding, by challenge with avirulent pathogens and by nitric oxide (NO). The overexpression of AtCYS1 blocks cell death activated by either avirulent pathogens or by oxidative and nitrosative stress in both A. thaliana suspension cultured cells and in transgenic tobacco plants. The suppression of the NO-mediated cell death in plants overexpressing AtCYS1 provides the evidence that NO is not cytotoxic for the plant, indicating that NO functions as cell death trigger through the stimulation of an active process, in which cysteine proteases and theirs proteinaceous inhibitors appear to play a crucial role.

PubMed Disclaimer

Publication types

MeSH terms