Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles
- PMID: 12787641
- DOI: 10.1016/s0378-5173(03)00224-2
Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles
Abstract
The physicochemical properties, the colloidal stability in vitro and the biodistribution properties in mice of different PLGA-mPEG nanoparticle compositions were investigated. The nanoparticles were prepared by a precipitation-solvent evaporation technique. The physical characteristics and the colloidal stability of the PLGA-mPEG nanoparticles were significantly influenced by the composition of the PLGA-mPEG copolymer used to prepare the nanoparticles. PLGA-mPEG nanoparticles prepared from copolymers having relatively high mPEG/PLGA ratios were smaller and less stable than those prepared from copolymers having relatively low mPEG/PLGA ratios. All PLGA-mPEG nanoparticle compositions exhibited prolonged residence in blood, compared to the conventional PLGA nanoparticles. The composition of the PLGA-mPEG copolymer affected significantly the blood residence time and the biodistribution of the PLGA-mPEG nanoparticles in liver, spleen and bones. The in vivo behavior of the different PLGA-mPEG nanoparticle compositions did not appear to correlate with their in vitro stability. Optimum mPEG/PLGA ratios appeared to exist leading to long blood circulation times of the PLGA-mPEG nanoparticles. This may be associated with the effects of the mPEG/PLGA ratio on the density of PEG on the surface of the nanoparticles and on the size of the nanoparticles.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources