Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Feb 21;21(4):179-86.
doi: 10.1016/s1043-4666(03)00076-0.

Macrophage migration inhibitory factor and development of type-1 diabetes in non-obese diabetic mice

Affiliations

Macrophage migration inhibitory factor and development of type-1 diabetes in non-obese diabetic mice

Jörg Bojunga et al. Cytokine. .

Abstract

Aims/hypothesis: T-cell activation by specific antigen has been found to increase macrophage migration inhibitory factor (MIF) expression, indicating its role as an important feature of T-cell activation in vitro and in vivo. To date, the potential role of MIF in the development of autoimmune-mediated diabetes mellitus has not been studied.

Methods: MIF-mRNA expression in splenic lymphocytes of spontaneously diabetic non-obese diabetic (NOD) mice (n=6), cyclophosphamide-treated NOD mice (n=6), 14-day-old non-diabetic NOD mice (n=7) and C57/Bl6 control mice (n=6) was monitored using an internally standardised competitive reverse transcription-polymerase chain reaction, and the MIF-protein levels were determined using Western blot analysis. In addition, the impact of intraperitoneally administered recombinant MIF-protein treatment on diabetes incidence in NOD mice was evaluated.

Results: MIF-mRNA expression was markedly increased in splenic lymphocytes of spontaneously diabetic NOD mice as well as in 8-week-old NOD mice treated with cyclophosphamide compared with 2-week-old non-diabetic NOD and healthy C57BL/6 control mice. Western blot analyses showed decreased lymphocytic MIF-protein content in diabetic as well as in cyclophosphamide-treated animals compared with 2-week-old non-diabetic NOD and healthy C57BL/6 mice, probably as a consequence of increased protein secretion. Furthermore, treatment of NOD mice with recombinant MIF-protein at 25 microg twice a week, from age 6 to 11 weeks, led to an increased diabetes incidence (86%; n=7) compared with untreated control groups (55%; n=20) at week 34.

Conclusions/interpretation: In this study, we report for the first time that MIF-mRNA expression in splenic lymphocytes is up-regulated during development of cell-mediated diabetes in non-NOD mice. The data of our preliminary study suggest a possible role of MIF in autoimmune-inflammatory events, such as type-1 diabetes and also that anti-MIF therapeutic strategy might serve to attenuate autoimmune processes.

PubMed Disclaimer

Publication types

MeSH terms

Substances