Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Jun;24(3):357-87.
doi: 10.1210/er.2001-0037.

The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues

Affiliations
Review

The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues

Attilio Rigotti et al. Endocr Rev. 2003 Jun.

Abstract

Because cholesterol is a precursor for the synthesis of steroid hormones, steroidogenic tissues have evolved multiple pathways to ensure adequate supplies of cholesterol. These include synthesis, storage as cholesteryl esters, and import from lipoproteins. In addition to endocytosis via members of the low-density lipoprotein receptor superfamily, steroidogenic cells acquire cholesterol from lipoproteins by selective lipid uptake. This pathway, which does not involve lysosomal degradation of the lipoprotein, is mediated by the scavenger receptor class B type I (SR-BI). SR-BI is highly expressed in steroidogenic cells, where its expression is regulated by various trophic hormones, as well as in the liver. Studies of genetically manipulated strains of mice have established that SR-BI plays a key role in regulating lipoprotein metabolism and cholesterol transport to steroidogenic tissues and to the liver for biliary secretion. In addition, analysis of SR-BI-deficient mice has shown that SR-BI expression is important for alpha-tocopherol and nitric oxide metabolism, as well as normal red blood cell maturation and female fertility. These mouse models have also revealed that SR-BI can protect against atherosclerosis. If SR-BI plays similar physiological and pathophysiological roles in humans, it may be an attractive target for therapeutic intervention in cardiovascular and reproductive diseases.

PubMed Disclaimer

Publication types